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@ Motivation

HF band is a vital alternative to satellite links

Over-the-horizon Allocation by
links national regulators
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Multiple
collisions
between
HF users



@ Motivation

2G and 3G ALE protocols

Do not manage the spectrum in a wide-band
sense

Do not support real time channel evaluation

Link establishment can last for several seconds

Do not monitor users’ activity in the recent
past
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@ Motivation

Cognitive cycle of tasks as defined by Mitola
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@ Motivation

Cognitive Radio and HF Communications

— ALE as a primitive form of Cognitive Radio

— New specifications for the ALE protocol based on
Cognitive Radio



@ Goals of this Thesis

The primary goal of this Thesis is to evaluate and
to show the feasibility of the application of
cognitive radio principles to HF systems.



@ Goals of this Thesis

Selective
Transmission

Radio Environment

Define a decision making strategy

1. Acquisition of wideband measurements
2. Design a NBI detector

3. Define a spectrum sensing strategy

Broadband
Acquisition

Observe

Predict HF primary users activity
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@ Goals of this Thesis

1. Acquisition of wideband measurements

Radio Environment

Broadband
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@ HF Measurements Database

Spectrum activity in the 14 MHz, 21 MHz and 29MHz
amateur bands.

Yagi
antenna e
|

 Power measurements in the frequency domain.

* 640 kHz bandwidth (200 channels simultaneously):
amateur band and other stations.

* Duration: 10 minutes.
 Weekdays & Weekends.
 Each sample represents a 3kHz channel in 2 seconds.

Agilent PC with:

. . > System Vue and
Vector Signal Analyzer VSA software

Spectrum power
measurement
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@ HF Measurements Database
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@ HF Measurements Database
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@ Goals of this Thesis

1. Acquisition of wideband measurements
2. Design a NBI detector

Radio Environment

Broadband
Acquisition
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@ NBI in wideband HF receivers

Time (min)
Spectrum Power (dBm)

0
-20
-40
-60
-80
-100
-120

139 14 14.1 14.2 14.3 144
Frequency (MHz)

14



Spectrum Power {dBm}

@ NBI in wideband HF receivers
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@ NBI in wideband HF receivers
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@ NBI in wideband HF receivers

Wideband HF transceiver — Receiver diagram block
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)) NBI detection with Compressive Sensing

A proposal based on Compressive Sensing for NBI detection
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NBI detection with Compressive Sensing

Basics of Compressive Sensing:

x = Original Signal
(N samples)

T

=)

y =P X

Linear Measurement
Process

D

M x N transformation
(M <N)

=)

y = Compressive Measurements
(M measurements)
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NBI detection with Compressive Sensing

Basics of Compressive Sensing:
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)) NBI detection with Compressive Sensing

A proposal based on Compressive Sensing for NBI detection

ADC with f, << f
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NBI detection with Compressive Sensing

Detection rate
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NBI detection with Compressive Sensing

Experiments Validation:
Fit of the experiments to the empirical formula of the RD
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@ Goals of this Thesis

1. Acquisition of wideband measurements
2. Design a NBI detector

3. Define a spectrum sensing strategy

Radio Environment

Broadband
Acquisition
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Spectrum Sensing - Energy Detection

No prior knowledge
about licensed
users’ transmissions

ADC
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Spectrum Sensing - Energy Detection

Threshold A is defined by the Neyman-Pearson Lemma to maximise
the detection probability for a given false alarm probability
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Radio Environment

Broadband
Acquisition

Observe

Predict HF primary users activity
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HF Primary User Dynamics Model
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@ HF Primary User Dynamics Model

Hidden Markov Model

Doubly embedded stochastic process with an underlying
stochastic process that is not observable (it is hidden), but it can

only be observed through another set of stochastic processes
that produce the sequence of observations.




@ HF Primary User Dynamics Model

* Main model:
Ergodic HMM ‘
10 minutes sequences w w w
* 3 submodels: o
Left-right HMM \/

Observation symbols for 1
minute

ofoJofo o



HF Primary User Dynamics Model
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HF Primary User Dynamics Model

Average error rate (%)
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Goals of this Thesis

Radio Environment

Broadband
Acquisition

Selective
Transmission

Decide
& Act
D

Define a decision making strategy
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@ Decision making with UCB,

Upper Confidence Bound algorithms are based on

state
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Reinforcement Learning
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Agent-Environment Interaction
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@ Decision making with UCB,

Provides HF users with
Opportunistic Spectrum Access

Allows for short-term activity
prediction

| UCB, |
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@ Decision making with UCB,

Mean percentage of successful transmission rate
w.r.t. best opportunistic selection (%)

Single-Channel Selection with UCB,

Mean percentage of improvement with UCB1 (%)

N = Total number of channels

a = exploitation-exploration factor
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@ Decision making with UCB,-M

w.r.t. best opportunistic selection (%)

Mean percentage of successful transmission rate

Multi-Channel Selection with UCB,-M

Mean percentage of improvement with UCB,-M (%)
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@ Hybrid UCB-HMM: A Metacognitive Engine

Reduces complexity of N HMM
based models working in parallel

Decreases the amount of
signalling information exchanged
between transmitter and receiver

Adapts data transmission slots to
the behaviour of the
environment

Hybrid UCB-HMM
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Hybrid UCB-HMM: A Metacognitive Engine
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@ Hybrid UCB-HMM: A Metacognitive Engine

Successful transmission rate

Successful transmission rate
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@ Hybrid UCB-HMM: A Metacognitive Engine

Metacognitive Strateg
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)) Hybrid UCB-HMM: A Metacognitive Engine

Percentage of data transmission’s slots (%)

Duration of data transmission’s slots
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)) Hybrid UCB-HMM: A Metacognitive Engine
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@ Hybrid UCB-HMM: A Metacognitive Engine

Achieves 95% successful transmission rate

Reduces by 61% required channel signalling

Hybrid UCB-HMM
a=0.4and M/N=1/4

Adapts its configuration to the changes in the
environment
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@ Conclusions

Cognitive Radio is a feasible solution to
efficiently use the HF spectrum resources

* Both learning with HMM and decision making with
UCB, can help secondary HF users to avoid collisions

with other users.
e The hybrid UCB-HMM scheme acts as a
metacognitive engine in the HF environment.

A compressive detector can be used in wideband HF
receivers to detect NBI.



@ Future Work

* Design and implementation of a simpler
mechanism for link management than current
HF standards.

* Design and implementation of a NBI
mitigation scheme in the analog domain.
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